

THE ENERGY EVANGELISTS (EnergyPlus Team)

ASHRAE LowDown Showdown

SimBuild 2016 Conference

Building Type: Healthcare Total Floor Area: 50,000 ft² Number of Floors: 3 Location: Omaha, Nebraska

Total Energy Usage

2,745 MWh

Site EUI

kWh/sq.m.

Source EUI

kWh/sq.m.

Annual Electricity Usage

318 MWh

Annual NG Usage

MWh of BIO GAS

Annual Water Usage

3,353 Cubic Metres

Annual Electricity Cost

-25,080 \$

Annual NG Cost

12,066 \$

Annual Water Costs

18,318 \$

Total Annual Costs

5,304 \$

CPSF

Total Energy Generation

3,126 MWh

Net Zero Energy

Carbon Equivalent

- **215,825** Pounds

Toom

ieam			
Vice Captain	Amir Rezaei-Bazkiaei		
Lighting Design/Water	Use An-Lei Huang		
Envelope optimization	A rfa Aijazi		
Energy Modeler	J ason Kirkpatrick		
Internal Loads Design	Matthew Dahlhausen		
Fan	Matthew Larson		
Mechanical Engineer	V inay Devanathan		
Captain	Annie Marston		
Coach/Architect	Harshul Singhal		

Model Description

The proposed design has a circular form with easy access to critical areas and 30% window-to-wall ratio. An efficient dedicated outdoor air system (DOAS) equipped with a desiccant heat recovery wheel and an evaporative cooler provides fresh air to all the zones. Chilled water (CW) and hot water (HW) coils were selected for the DOAS unit. Four-pipe chilled and heated beams provide zone conditioning. A few high load zones were equipped with supplemental CW fan-coil units to satisfy thermal comfort. PV and combined heat and power (CHP), fed by local bio-gas from a landfill, provide the entire building electricity demand with 26% surplus energy fed back to the grid annually.

Annual Energy Cost Comparison

LDSd Results Summary	Baseline	Proposed Design
Total Energy Usage (MWh)	1,409	2,745
Site EUI (kWh/m2)	356	694
Source EUI (kWh/m2)	1,038	871
Annual Electricity Usage (MWh)	1,069	318
Annual Natural Gas Usage (MWh)	340	2427 (bio-gas)
Annual Water Usage (m3)	509	3,353
Annual Electricity Cost (\$)	81,111	(25,080)
Annual NG usage (\$)	2,209	12,066
Annual Water Costs (\$)	2,760	18,318
Total Energy Generation (MWh)	-	3,162
Carbon Equivalent (lbs Ceq)	1,659,504	(215,825)

Energy Savings Strategies

- The compact circular building form provides ample daylight while minimizing the exterior exposure.
- A very tight envelope (0.1 CFM/ft2 infiltration) with R-40 roof, R-40 wall and triple pane windows (U-0.18 Btu/hr.ft2.F, SHGC-0.2, VT-0.7) combined with medium thermal mass reduces the HVAC loads.
- LED lighting for the entire building and daylight sensors for all the perimeter spaces.
- Thorough research was performed on internal loads and key strategies targeted elevator, medical equipment and office computer loads.
- DOAS has a desiccant heat wheel and evaporative cooler to minimize heating and cooling energy.
- Both DOAS and four-pipe beams' CW/HW coils take advantage of a central water plant heat recovery with a micro-turbine and an absorption chiller.

Design features

- 1. Panels tilted at 35 degree facing south direction – provides shade from the direct glare. Also, increases the yield of the electricity.
- 2. Semi-covered spaces for the patients
- 3. Optimized shape of the building
- 4. Street/exterior lighting with PV panels
- 5. Green roof
- 6. Optimized shading devices

